NETHMAL PERERA (EIT) BSc Mechanical Engineering
  • Home
    • Ethics >
      • Engineering Ethics >
        • Principles of Ethics in Engineering
        • Fundamental Cannons
        • Professional Obligations
      • Classical Ethics >
        • Consequentialism
        • Deontological Ethics
        • Virtue Theory
    • Senior Design >
      • General Requirements
      • Project Team
      • Goals & Deliverables
      • Modern Wind Turbine Technology
      • Brainstorming >
        • Preliminary Design Concept
        • Modeling Phase
        • Simulation and Testing
        • Evaluation
      • Research
    • MANUFACTURING & PRODUCTION PLANNING
    • HVAC >
      • Fundamentals and Terminology >
        • HEAT
        • Thermodynamics
      • Basics of HVAC-R Systems >
        • Forced Air Systems >
          • Duct Leakage Testing
      • Safety
      • Refrigeration >
        • Vapor-Compression System
        • Pressure-Temperation Relation, Superheat and Sub-cooling
        • Refrigerant Cycle
        • Refrigerant Cycle Diagram - Mollier Charts
    • Designs >
      • Solid Modeling
      • Finite Element Analysis
      • Flow Simulation
    • MECHANICAL ENGINEERING >
      • Mechanical Engineering Curriculum
      • BASICS AND APPLICATIONS
      • INDUSTRIES EMPLOYING MECHANICAL ENGINEERS
  • About
  • PORTFOLIO

senior design

A Vertical Drivetrain Transmission for a Dual Wind Turbine

Project Mentor - Dr. Salim Azzouz 

Project Description

Picture
A wind turbine tower with an integrated gearbox, vertical drive-train, and electricity generator is supporting a nacelle with one wind turbine rotor. The gearbox transmission and the electricity generator are vertically supported within the tower variable diameter core. Mechanical power flows from the turbine rotor to the electricity generator through a gearbox and a vertical drive-train transmission espousing the tower conical contour shape. The ground based electricity generator is driven with a low inertia aluminum based drive-train frame. The performance of the new turbine design should be determined and compared to the existing classically designed ones. It is mandatory for this project to determine the equation of motion of the whole system, and determine its kinematic and dynamic behavior. This would include velocities, accelerations, and generated torques in wind regions 2 and 3. A control law for such a system has to be established, as well as the construction of a medium scale prototype. Some parts of the prototype have to be protected against weather elements and for safety issues.
general requirements
Project team
Brainstorming
Research
Proudly powered by Weebly
  • Home
    • Ethics >
      • Engineering Ethics >
        • Principles of Ethics in Engineering
        • Fundamental Cannons
        • Professional Obligations
      • Classical Ethics >
        • Consequentialism
        • Deontological Ethics
        • Virtue Theory
    • Senior Design >
      • General Requirements
      • Project Team
      • Goals & Deliverables
      • Modern Wind Turbine Technology
      • Brainstorming >
        • Preliminary Design Concept
        • Modeling Phase
        • Simulation and Testing
        • Evaluation
      • Research
    • MANUFACTURING & PRODUCTION PLANNING
    • HVAC >
      • Fundamentals and Terminology >
        • HEAT
        • Thermodynamics
      • Basics of HVAC-R Systems >
        • Forced Air Systems >
          • Duct Leakage Testing
      • Safety
      • Refrigeration >
        • Vapor-Compression System
        • Pressure-Temperation Relation, Superheat and Sub-cooling
        • Refrigerant Cycle
        • Refrigerant Cycle Diagram - Mollier Charts
    • Designs >
      • Solid Modeling
      • Finite Element Analysis
      • Flow Simulation
    • MECHANICAL ENGINEERING >
      • Mechanical Engineering Curriculum
      • BASICS AND APPLICATIONS
      • INDUSTRIES EMPLOYING MECHANICAL ENGINEERS
  • About
  • PORTFOLIO